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Throughout, let g = sl2(C) and X = P1.
We let Ω denote the Casimir element, which generates the
centre of U(g).
In this talk, we give a geometric description of all
representations of g on which Ω acts trivially. Indeed, these
representations arise as the global sections of D-modules on
P1.
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Theorem (Beilinson–Bernstein, Brylinski–Kashiwara)
1 The morphism

U(g)/Ω→ DX (X )

is an isomorphism.
2 The global section functor is exact on DX -modules.
3 IfM is a DX -module withM(X ) = 0, thenM = 0.

Corollary
The global section functor yields an equivalence of categories
between DX -modules and U(g)/Ω-modules.
The quasi-inverse is given by localization: M 7→ DX ⊗DX (X) M.
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Proof of the Corollary:
Write Loc for the localization functor. If M is a DX (X )-module,
consider

DX (X )⊕I → DX (X )⊕J → M → 0.

Since Loc is right exact and the global section functor is exact,
the fact that (LocM)(X ) ∼= M follows from the case M = DX (X ).
It is an easy consequence of 2. and 3. that the global sections
functor reflects isomorphisms.
If nowM is a DX -module, consider the natural morphism
Loc(M(X ))→M. This is an isomorphism on global sections
by the above, hence an isomorphism.

A. Bode Beilinson–Bernstein localization



Main results
An isomorphism of algebras

About the proof
Explicit examples

If A is a C-algebra, an N-filtration on A is a sequence of
subspaces

Fil0A ⊆ Fil1A ⊆ . . . ⊆ A

such that 1 ∈ Fil0A, ∪FilnA = A and FiliA · FiljA ⊆ Fili+jA.
In this case, the associated graded space

gr A := ⊕FilnA/Filn−1A

inherits the structure of a (graded) C-algebra (set Fil−1A = 0).
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Example
1 U(g) is filtered by polynomial degree and grU(g) ∼= Symg

(PBW).
2 The first Weyl algebra A1 is filtered by order of differential

operators: Fil0A1 = C[x ], Fil1A1 = C[x ] + C[x ]∂, . . ., and
grA1

∼= C[X ,Y ].
3 More generally: if X is any smooth scheme, then DX (X ) is

filtered with grDX (X ) ∼= O(T ∗X ).
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Lemma
Let A,B be N-filtered algebras and let f : A→ B be a morphism
of algebras such that f (FiliA) ⊆ FiliB. Then f induces a
morphism grf : grA→ grB. If grf is an isomorphism, then so is f .

We can now prove that the Beilinson–Bernstein map is indeed
an isomorphism: it preserves the filtration, and the associated
graded map

C[e,h, f ]/(h2 + 4fe)→ O(T ∗P1)

is indeed an isomorphism.
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Let O(1) be Serre’s twisting sheaf on P1 and O(n) = O(1)⊗n for
n ≥ 0. Note that O(n)(P1) ∼= L(n), so there are natural maps
O ⊗C L(n)→ O(n) and (after dualizing and tensoring)
O → O(n)⊗C L(n).
The key point is now that ifM is a D-module on P1, then the
induced epimorphismM⊗C L(n)→M⊗O O(n) and the
induced monomorphismM→M⊗O O(n)⊗C L(n) actually
split in the category of sheaves! (All objects carry natural
g-actions, decompose into generalized Ω-eigenspaces.)
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The statement of the theorem now follows by using Serre
vanishing for all O-coherent O-submodules ofM.
E.g., if N is any coherent submodule ofM, then the diagram

H1(X ,N ) //

��

H1(X ,M)

��
0 = H1(X ,N (n))⊗ L(n) // H1(X ,M(n))⊗ L(n)

for n large shows that H1(X ,N )→ H1(X ,M) is the zero map.
But H1(X ,M) ∼= lim−→H1(X ,N ), showing exactness of global
sections.
In our sl2-case, there is also a purely D-module theoretic proof,
by lifting modules on P1 to A2 \ {(0,0)}.
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We have seen some standard U(g)-modules in Tobias’ talk.
Which D-modules do they correspond to?

Example (LocL(0) = O)

OP1 is a DP1-module in a natural way. Its global sections are
O(P1) = C (the constant functions). e, f ,h (resp. the
corresponding derivations) all act trivially, i.e. O(P1) ∼= L(0).
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Example (LocM(0)∨ = j∗OU )

Let U = SpecC[t ] ⊂ P1, and let j : U → P1 denote the
embedding. (j∗OU)(P1) = O(U) = C[t ] carries a natural
D(P1)-module structure, via the map D(P1)→ D(U).
Julian already calculated that e acts as −∂t , h as −2t∂t , f as
t2∂t .
In particular, {tn : n ≥ 0} is a basis of h-eigenvectors with
eigenvalues −2n.

A. Bode Beilinson–Bernstein localization



Main results
An isomorphism of algebras

About the proof
Explicit examples

Example (j∗OU , continued)

Calculating the action of e and f , we find C[t ] ∼= M(0)∨, with the
constant functions C ∼= L(0) ⊂ C[t ] as the unique irreducible
submodule. On the level of D-modules, this inclusion
corresponds to the natural morphism OX → j∗OU . Its cokernel
has global sections C[t ]/C, which is isomorphic to
M(−2) = L(−2).

There is also a notion of a D-module dual, and the localization
of M(0) is given by the dual of j∗OU .
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