Beilinson–Bernstein localization

A. Bode

Bergische Universität Wuppertal

ヘロト 人間 とくほとくほとう

æ –

- 2 An isomorphism of algebras
- 3 About the proof

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

ъ

Throughout, let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$ and $X = \mathbb{P}^1$.

We let Ω denote the Casimir element, which generates the centre of $U(\mathfrak{g})$.

In this talk, we give a geometric description of all representations of \mathfrak{g} on which Ω acts trivially. Indeed, these representations arise as the global sections of \mathcal{D} -modules on \mathbb{P}^1 .

ヘロア 人間 アメヨア 人口 ア

Theorem (Beilinson–Bernstein, Brylinski–Kashiwara)

The morphism

$$U(\mathfrak{g})/\Omega o \mathcal{D}_X(X)$$

is an isomorphism.

- Interpretation functor is exact on D_X-modules.
- If \mathcal{M} is a \mathcal{D}_X -module with $\mathcal{M}(X) = 0$, then $\mathcal{M} = 0$.

Corollary

The global section functor yields an equivalence of categories between \mathcal{D}_X -modules and $U(\mathfrak{g})/\Omega$ -modules. The quasi-inverse is given by localization: $M \mapsto \mathcal{D}_X \otimes_{\mathcal{D}_X(X)} M$.

ヘロン 人間 とくほ とくほ とう

э

Proof of the Corollary:

Write Loc for the localization functor. If *M* is a $\mathcal{D}_X(X)$ -module, consider

$$\mathcal{D}_X(X)^{\oplus I} o \mathcal{D}_X(X)^{\oplus J} o M o 0.$$

Since Loc is right exact and the global section functor is exact, the fact that $(Loc M)(X) \cong M$ follows from the case $M = \mathcal{D}_X(X)$. It is an easy consequence of 2. and 3. that the global sections functor reflects isomorphisms.

If now \mathcal{M} is a \mathcal{D}_X -module, consider the natural morphism $\operatorname{Loc}(\mathcal{M}(X)) \to \mathcal{M}$. This is an isomorphism on global sections by the above, hence an isomorphism.

・ロン ・聞 と ・ ヨン ・ ヨン・

If A is a \mathbb{C} -algebra, an \mathbb{N} -filtration on A is a sequence of subspaces

 $\operatorname{Fil}_0 A \subseteq \operatorname{Fil}_1 A \subseteq \ldots \subseteq A$

such that $1 \in \operatorname{Fil}_0 A$, $\cup \operatorname{Fil}_n A = A$ and $\operatorname{Fil}_i A \cdot \operatorname{Fil}_j A \subseteq \operatorname{Fil}_{i+j} A$. In this case, the associated graded space

gr
$$A := \oplus \operatorname{Fil}_n A / \operatorname{Fil}_{n-1} A$$

inherits the structure of a (graded) \mathbb{C} -algebra (set Fil₋₁A = 0).

ヘロト 不得 とうき とうとう

1

Example

- U(g) is filtered by polynomial degree and grU(g) ≅ Symg (PBW).
- ② The first Weyl algebra A_1 is filtered by order of differential operators: Fil₀ $A_1 = \mathbb{C}[x]$, Fil₁ $A_1 = \mathbb{C}[x] + \mathbb{C}[x]\partial$,..., and gr $A_1 \cong \mathbb{C}[X, Y]$.
- So More generally: if X is any smooth scheme, then $\mathcal{D}_X(X)$ is filtered with $\operatorname{gr}\mathcal{D}_X(X) \cong \mathcal{O}(T^*X)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Lemma

Let A, B be \mathbb{N} -filtered algebras and let $f : A \to B$ be a morphism of algebras such that $f(\operatorname{Fil}_i A) \subseteq \operatorname{Fil}_i B$. Then f induces a morphism $\operatorname{gr} f : \operatorname{gr} A \to \operatorname{gr} B$. If $\operatorname{gr} f$ is an isomorphism, then so is f.

We can now prove that the Beilinson–Bernstein map is indeed an isomorphism: it preserves the filtration, and the associated graded map

$$\mathbb{C}[e, h, f]/(h^2 + 4fe) \rightarrow \mathcal{O}(T^*\mathbb{P}^1)$$

is indeed an isomorphism.

ヘロト ヘアト ヘヨト ヘ

Let $\mathcal{O}(1)$ be Serre's twisting sheaf on \mathbb{P}^1 and $\mathcal{O}(n) = \mathcal{O}(1)^{\otimes n}$ for $n \ge 0$. Note that $\mathcal{O}(n)(\mathbb{P}^1) \cong L(n)$, so there are natural maps $\mathcal{O} \otimes_{\mathbb{C}} L(n) \to \mathcal{O}(n)$ and (after dualizing and tensoring) $\mathcal{O} \to \mathcal{O}(n) \otimes_{\mathbb{C}} L(n)$.

The key point is now that if \mathcal{M} is a \mathcal{D} -module on \mathbb{P}^1 , then the induced epimorphism $\mathcal{M} \otimes_{\mathbb{C}} L(n) \to \mathcal{M} \otimes_{\mathcal{O}} \mathcal{O}(n)$ and the induced monomorphism $\mathcal{M} \to \mathcal{M} \otimes_{\mathcal{O}} \mathcal{O}(n) \otimes_{\mathbb{C}} L(n)$ actually split in the category of sheaves! (All objects carry natural g-actions, decompose into generalized Ω -eigenspaces.)

・ロト ・ 理 ト ・ ヨ ト ・

(

The statement of the theorem now follows by using Serre vanishing for all \mathcal{O} -coherent \mathcal{O} -submodules of \mathcal{M} . E.g., if \mathcal{N} is any coherent submodule of \mathcal{M} , then the diagram

$$\begin{array}{c} \mathrm{H}^{1}(X,\mathcal{N}) \longrightarrow \mathrm{H}^{1}(X,\mathcal{M}) \\ \downarrow \\ \mathcal{D} = \mathrm{H}^{1}(X,\mathcal{N}(n)) \otimes \mathcal{L}(n) \longrightarrow \mathrm{H}^{1}(X,\mathcal{M}(n)) \otimes \mathcal{L}(n) \end{array}$$

for *n* large shows that $H^1(X, \mathcal{N}) \to H^1(X, \mathcal{M})$ is the zero map. But $H^1(X, \mathcal{M}) \cong \varinjlim H^1(X, \mathcal{N})$, showing exactness of global sections.

In our \mathfrak{sl}_2 -case, there is also a purely \mathcal{D} -module theoretic proof, by lifting modules on \mathbb{P}^1 to $\mathbb{A}^2 \setminus \{(0,0)\}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

We have seen some standard $U(\mathfrak{g})$ -modules in Tobias' talk. Which \mathcal{D} -modules do they correspond to?

Example (LocL(0) = O)

 $\mathcal{O}_{\mathbb{P}^1}$ is a $\mathcal{D}_{\mathbb{P}^1}$ -module in a natural way. Its global sections are $\mathcal{O}(\mathbb{P}^1) = \mathbb{C}$ (the constant functions). *e*, *f*, *h* (resp. the corresponding derivations) all act trivially, i.e. $\mathcal{O}(\mathbb{P}^1) \cong L(0)$.

ヘロン 人間 とくほ とくほ とう

Example $(Loc M(0)^{\vee} = j_* \mathcal{O}_U)$

Let $U = \operatorname{Spec}\mathbb{C}[t] \subset \mathbb{P}^1$, and let $j : U \to \mathbb{P}^1$ denote the embedding. $(j_*\mathcal{O}_U)(\mathbb{P}^1) = \mathcal{O}(U) = \mathbb{C}[t]$ carries a natural $\mathcal{D}(\mathbb{P}^1)$ -module structure, via the map $\mathcal{D}(\mathbb{P}^1) \to \mathcal{D}(U)$. Julian already calculated that e acts as $-\partial_t$, h as $-2t\partial_t$, f as $t^2\partial_t$. In particular, $\{t^n : n \ge 0\}$ is a basis of h-eigenvectors with

in particular, $\{t^n : n \ge 0\}$ is a basis of *n*-eigenvectors with eigenvalues -2n.

ヘロン 人間 とくほ とくほ とう

Example ($j_* \mathcal{O}_U$, continued)

Calculating the action of *e* and *f*, we find $\mathbb{C}[t] \cong M(0)^{\vee}$, with the constant functions $\mathbb{C} \cong L(0) \subset \mathbb{C}[t]$ as the unique irreducible submodule. On the level of \mathcal{D} -modules, this inclusion corresponds to the natural morphism $\mathcal{O}_X \to j_*\mathcal{O}_U$. Its cokernel has global sections $\mathbb{C}[t]/\mathbb{C}$, which is isomorphic to M(-2) = L(-2).

There is also a notion of a \mathcal{D} -module dual, and the localization of M(0) is given by the dual of j_*O_U .

ヘロト 不得 とうき とうとう