Beilinson–Bernstein localization

A. Bode

Bergische Universität Wuppertal

イロメイ部メイ君メイ君メー

÷.

 299

A. Bode [Beilinson–Bernstein localization](#page-0-0)

 \mathbf{p} $A\equiv \mathbb{R} \Rightarrow A\equiv \mathbb{R}$

÷.

 2990

Throughout, let $\mathfrak{g}=\mathfrak{sl}_2(\mathbb{C})$ and $X=\mathbb{P}^1.$

We let Ω denote the Casimir element, which generates the centre of *U*(g).

In this talk, we give a geometric description of all representations of α on which Ω acts trivially. Indeed, these representations arise as the global sections of D -modules on \mathbb{P}^1 .

イロメ イ押 メイヨメ イヨメ

ă.

Theorem (Beilinson–Bernstein, Brylinski–Kashiwara)

¹ *The morphism*

$$
U(\mathfrak{g})/\Omega\to \mathcal{D}_X(X)
$$

is an isomorphism.

- ² *The global section functor is exact on* D*^X -modules.*
- **3** If M is a \mathcal{D}_X -module with $\mathcal{M}(X) = 0$, then $\mathcal{M} = 0$.

Corollary

The global section functor yields an equivalence of categories between D*^X -modules and U*(g)/Ω*-modules. The quasi-inverse is given by localization:* $M \mapsto \mathcal{D}_X \otimes_{\mathcal{D}_Y(X)} M$.

イロメ 不優 トイヨメ イヨメー

Proof of the Corollary:

Write Loc for the localization functor. If M is a $\mathcal{D}_X(X)$ -module, consider

$$
\mathcal{D}_X(X)^{\oplus l} \to \mathcal{D}_X(X)^{\oplus J} \to M \to 0.
$$

Since Loc is right exact and the global section functor is exact, the fact that $(LocM)(X) \cong M$ follows from the case $M = \mathcal{D}_X(X)$. It is an easy consequence of 2. and 3. that the global sections functor reflects isomorphisms.

If now M is a D_X -module, consider the natural morphism $Loc(\mathcal{M}(X)) \to \mathcal{M}$. This is an isomorphism on global sections by the above, hence an isomorphism.

イロト イ団 トイヨ トイヨ トー

If *A* is a C-algebra, an N-filtration on *A* is a sequence of subspaces

$$
\text{Fil}_0A\subseteq \text{Fil}_1A\subseteq \ldots \subseteq A
$$

such that $1 \in \text{Fil}_{0}A$, $\cup \text{Fil}_{n}A = A$ and $\text{Fil}_{i}A \cdot \text{Fil}_{i}A \subseteq \text{Fil}_{i}A$. In this case, the associated graded space

$$
\mathrm{gr}\: A:=\oplus \mathrm{Fil}_n A/\mathrm{Fil}_{n-1} A
$$

inherits the structure of a (graded) C-algebra (set $Fil_{-1}A = 0$).

イロト イ押 トイヨ トイヨ トー

÷. QQ

Example

- **1** *U*(g) is filtered by polynomial degree and gr*U*(g) ≅ Symg (PBW).
- **2** The first Weyl algebra A_1 is filtered by order of differential operators: Fil₀ $A_1 = \mathbb{C}[x]$, Fil₁ $A_1 = \mathbb{C}[x] + \mathbb{C}[x]\partial$, ... and $grA_1 \cong \mathbb{C}[X, Y].$
- \bullet More generally: if *X* is any smooth scheme, then $\mathcal{D}_X(X)$ is filtered with $gr\mathcal{D}_X(X) \cong \mathcal{O}(T^*X)$.

イロト イ押 トイヨ トイヨ トーヨー

 QQ

Lemma

Let A, *B be* N*-filtered algebras and let f* : *A* → *B be a morphism of algebras such that f*(Fil*iA*) ⊆ Fil*iB. Then f induces a morphism* $\text{gr} f : \text{gr} A \rightarrow \text{gr} B$. If $\text{gr} f$ is an isomorphism, then so is f.

We can now prove that the Beilinson–Bernstein map is indeed an isomorphism: it preserves the filtration, and the associated graded map

$$
\mathbb{C}[e,h,f]/(h^2+4fe)\to \mathcal{O}(T^*\mathbb{P}^1)
$$

is indeed an isomorphism.

医电子 化重子

 \leftarrow \leftarrow \rightarrow

Let $\mathcal{O}(1)$ be Serre's twisting sheaf on \mathbb{P}^1 and $\mathcal{O}(n) = \mathcal{O}(1)^{\otimes n}$ for *n* ≥ 0. Note that $\mathcal{O}(n)(\mathbb{P}^1) \cong L(n)$, so there are natural maps $\mathcal{O}\otimes_{\mathbb{C}} L(n) \to \mathcal{O}(n)$ and (after dualizing and tensoring) $\mathcal{O} \rightarrow \mathcal{O}(n) \otimes_{\mathbb{C}} L(n)$.

The key point is now that if $\mathcal M$ is a $\mathcal D\text{-module}$ on $\mathbb P^1,$ then the induced epimorphism $M \otimes_{\mathbb{C}} L(n) \to M \otimes_{\mathcal{O}} \mathcal{O}(n)$ and the induced monomorphism $M \to M \otimes_{\mathcal{O}} \mathcal{O}(n) \otimes_{\mathbb{C}} L(n)$ actually split in the category of sheaves! (All objects carry natural g-actions, decompose into generalized Ω-eigenspaces.)

イロト イ団 トイヨ トイヨ トー

 QQ

The statement of the theorem now follows by using Serre vanishing for all \mathcal{O} -coherent \mathcal{O} -submodules of \mathcal{M} . E.g., if N is any coherent submodule of M , then the diagram

$$
\mathrm{H}^{1}(X, \mathcal{N}) \longrightarrow \mathrm{H}^{1}(X, \mathcal{M})
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
0 = \mathrm{H}^{1}(X, \mathcal{N}(n)) \otimes L(n) \longrightarrow \mathrm{H}^{1}(X, \mathcal{M}(n)) \otimes L(n)
$$

for *n* large shows that $\mathrm{H}^1(X,\mathcal{N}) \to \mathrm{H}^1(X,\mathcal{M})$ is the zero map. But $H^1(X, \mathcal{M}) \cong \varinjlim H^1(X, \mathcal{N})$, showing exactness of global sections.

In our sI_2 -case, there is also a purely D -module theoretic proof, by lifting modules on \mathbb{P}^1 to $\mathbb{A}^2\setminus\{(0,0)\}.$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷. QQ

We have seen some standard *U*(g)-modules in Tobias' talk. Which D-modules do they correspond to?

Example $(LocL(0) = \mathcal{O})$

 $\mathcal{O}_{\mathbb{P}^1}$ is a $\mathcal{D}_{\mathbb{P}^1}$ -module in a natural way. Its global sections are $\mathcal{O}(\mathbb{P}^1) = \mathbb{C}$ (the constant functions). *e*, *f*, *h* (resp. the corresponding derivations) all act trivially, i.e. $\mathcal{O}(\mathbb{P}^1) \cong L(0)$.

イロト イ押 トイヨ トイヨ トー

ă. QQ

$\mathsf{Example}\ (\mathsf{Loc}\ \mathsf{M}(0)^\vee = j_*\mathcal{O}_\mathsf{U})$

Let $U = \mathrm{Spec} \mathbb{C}[t] \subset \mathbb{P}^1$, and let $j: U \to \mathbb{P}^1$ denote the embedding. $(j_*\mathcal{O}_U)(\mathbb{P}^1)=\mathcal{O}(\textit{U})=\mathbb{C}[t]$ carries a natural $\mathcal{D}(\mathbb{P}^1)$ -module structure, via the map $\mathcal{D}(\mathbb{P}^1)\to\mathcal{D}(\boldsymbol{U}).$ Julian already calculated that *e* acts as −∂*^t* , *h* as −2*t*∂*^t* , *f* as *t* 2∂*t* . In particular, $\{t^n: n \geq 0\}$ is a basis of *h*-eigenvectors with

eigenvalues −2*n*.

イロト イ押 トイヨ トイヨ トー

B

 QQ

Example (*j*∗O*U*, continued)

Calculating the action of *e* and *f*, we find $\mathbb{C}[t] \cong M(0)^{\vee}$, with the constant functions C ∼= *L*(0) ⊂ C[*t*] as the unique irreducible submodule. On the level of D -modules, this inclusion corresponds to the natural morphism $\mathcal{O}_X \rightarrow j_*\mathcal{O}_U$. Its cokernel has global sections C[*t*]/C, which is isomorphic to $M(-2) = L(-2)$.

There is also a notion of a $\mathcal D$ -module dual, and the localization of *M*(0) is given by the dual of *j*∗*OU*.

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

÷. QQ